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An algorithm for the solution of the three-dimensional resistive magnetohydrodynamic
equations in toroidal geometry is presented. The algorithm employs the pseudospectral
method for approximation in the two periodic coordinates, and finite differences in the radial
direction. Efficient Fast Fourier Transforms are used to communicate between configuration
and Fourier space. Leapfrog time advancement is used for advective terms. Diffusion terms
are treated implicitly to avoid severe time step restrictions. Sample cases are presented, and a
comparison of the method with standard finite difference techniques is presented and

discussed.

1. INTRODUCTION

It is now well established that multidimensional nonlinear resistive magneto-
hydrodynamics (MHD) is an excellent model for the description of the macroscopic
dynamics of present magnetic fusion experiments. Two-dimensional simulation of
these processes has become commonplace [1-3]|. Such calculations have provided
valuable insights into the interpretation of experimental diagnostics [4] and the
nonlinear behavior of unstable modes in various devices |1, 5-7].

It has recently been recognized that two-dimensional motions, while enlightening,
do not represent the true state of plasma dynamics, and that fully three-dimensional
calculations are required [8, 9]. For tokamak plasmas, where one component of the
magnetic field is everywhere large, it is possible to derive a reduced set of equations
that adequately describes the dynamics of these devices |10]|. Three-dimensional
simulations of these equations have provided a detailed picture of plasma evolution
[8,9.11]. These calculations can proceed much faster than solutions of the original
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equations. In other magnetic fusion devices, such as the spheromak and the reversed
field pinch, no such generally applicable set of reduced equations exists at present,
and one must solve the primitive equations. Incompressibility may provide some
computational relief [12] but this assumption can only be justified a posteriori.

The periodic nature of the poloidal and toroidal directions in many fusion devices
allows solutions to be represented by Fourier series in these coordinates. Simulations
of tokamak plasmas with reduced equations have found that only a handful of these
modes are important to the dynamics [13]|. Codes developed for the solution of such
problems have made use of this fact by introducing a mode selection process whereby
only a few modes are retained in the calculation [14]. This procedure has also been
used in incompressible simulations of the primitive equations [12]|. The convolution
sums that arise from the Fourier representation of quadratic nonlinearities in
configuration space are then computed directly.

In fusion devices such as the reversed field pinch of the spheromak no a priori
mode selection is possible. Indeed, there is reason to believe that many large-scale
modes will be equally important |7]. Thus a large number of mode interactions are
probable. These large-scale motions may serve to drive small-scale MHD turbulence,
which may be responsible for such important physical effects as dynamo action and
profile maintenance. Also, the particular path taken in the cascade of energy from
long to short wavelength (along with the possibility of inverse cascades from short to
long wavelength) is unknown and may be important. A large number (>100) of
modes must therefore be retained in such calculations.

The physical and computational problems described above are similar to those
encountered in the simulation of turbulent hydrodynamic flows. Accurate and
efficient methods have been developed for the solution of these problems [15-20}.
These spectral methods are based on the use of the Fast Fourier Transform (FFT),
which allows the convolution sums to be evaluated in O(N In, N) operations, as
opposed to O(N?) operations for direct summation |15|. This allows many modes to
be used in the simulation.

In this paper we describe an algorithm for the numerical solution of the primitive
resistive MHD equations by these spectral methods, and present some examples of
the application of the code based on this algorithm to the dynamics of magnetic
fusion experiments. In Section 2 we present the mathematical model, and the coor-
dinate system in which the model is applied. In Section 3 we discuss techniques of
spatial approximation, including some details of the spectral and pseudospectral
representations. The discussions here are by no means complete or rigorous, and are
included to make the presentation self-contained. These methods have been described
in great detail elsewhere |20]. In Section 4 we discuss methods of time advancement,
including splitting of the spatial operators and time step restrictions. Section 5
contains examples of several types of computations that have been performed,
including a comparison of our algorithm with standard finite differences.
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2. MATHEMATICAL MODEL

2.1. Basic Equations

The study of large-scale dynamics in fusion and astrophysical plasmas involves the
description of motions that occur on long time scales. In these cases the plasma acts
as an electrically conducting fluid whose motions are adequately described by the
single-fluid resistive magnetohydrodynamic (MHD) equations (see, for example,
Ref. [21] for assumptions necessary for the validity of the model). In a suitable
nondimensional form, they are

B
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where B is the magnetic field measured in units of a characteristic field B,, v is the
velocity measured in units of the Alfvén velocity v, = B,/\/4mp,, p is the mass
density measured in units of a characteristic density p,, p is the thermodynamic
pressure measured in units of p,=B./8n, y is the ratio of specific heats, and all
lengths are measured in units of a characteristic length a. The coefficient 7, is a
nondimensional resistivity that may be a function of the dependent variables. When
the resistivity is constant in space and time, #, is the inverse of the Lundquist number
S =tg/ts, where t, =4na’/c’y is the resistive diffusion time and ¢, =a/v, is the
Alfvén transit time. Note that S is defined in terms of the normalization constants,
and is not to be confused with the magnetic Reynolds number R,;, which is defined
in terms of local quantities. The last term in Eq. (1d) represents energy losses not
directly encompassed by the model, and is included to control the effects of Joule
heating on plasma beta (8 = 8np/B?).

When 7, vanishes, Eq. (1a)~(1d) define the ideal MHD model. A finite value of #,
relaxes the flux topology constraints of these equations with the result that previously
unallowed motions are possible [22]. These new dynamical processes are essential for
an adequate description of fusion and astrophysical plasmas. The inclusion of further
dissipative processes, such as ion viscosity of thermal conduction, removes no further
constraints on the magnetic topology. In extremely hot or strongly magnetized
plasmas these transport coefficients become highly anisotropic, with values parallel to
the local magnetic field lines far exceeding those in the perpendicular directions. In
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these cases (when the parallel mean free path becomes comparable to macroscopic
scale lengths) it is not clear that first-order transport theory is an adequate
description of parallel transport. We thus exclude these effects from the model.

We note that the compressible nature of Eqgs. (1a)-(1d) admits the propagation of
Alfvén (fast magnetosonic) waves perpendicular to the field. These waves evolve on a
time scale defined by a cross-field scale length divided by the Alfvén velocity. For a
diffuse pinch this length scale is the minor radius. Since many phenomena of interest
occur on much longer times scales, this presents a computational problem. In some
fusion experiments (such as the tokamak) one component of the magnetic field is
everywhere large. This allows a self-consistent ordering in which the plasma becomes
incompressible, and the magnetosonic wave is eliminated [10]. The remaining high-
frequency normal mode is the shear Alfvén wave propagating parallel to the field.
This wave evolves on a time scale defined by a parallel scale length divided by the
Alfvén velocity. In fusion experiments in which the incompressible ordering is valid,
this scale length is the major radius. Thus in these cases the fast time scale is
increased by a factor that is of the order of the aspect ratio, thereby greatly reducing
the computational requirements. However, in general such orderings are not possible,
and there is no a priori justification for eliminating compressibility from the model.
Indeed. for highly sheared, low-g devices such as the reversed field pinch a shear
Alfven wave travelling near the field reversal surface evolves on a time scale that is
on the order of the minor radius divided by the Alfvén velocity, i.e., the same order as
that of the compressible wave. Such effects may be minimized in incompressible
calculations by choosing a relatively coarse poloidal mesh |12], but such real physics
effects as Ohmic heating, adiabatic compression, and density fluctuations are then
missed. Thus to make the maximum contact with experimental fusion plasmas in a
wide variety of configurations we retain compressibility in our model.

2.2. COORDINATE SYSTEM

We choose to express Egs. (1a)-(1d) in the (r, §, {) coordinate system shown in
Fig. 1, where 0 < r<a, 0 < 60K 2x, 0 < { < 2n. This system describes a circular cross
section of radius a rotated through 27 radians about an axis (the major axis) a
distance R, from the center of the circle. The path traced by the center of the circle
during a rotation through the angle { is called the minor axis. The coordinate system
is related to cylindrical coordinates (R, ¢, Z) referred to the major axis by

R=R,+rcosb, (2a)
Z =rsin 6, (2b)
6= (2¢)

and is suitable for the description of confined toroidal plasma systems with circular
cross section.
The vector differential operators appearing on the righ-hand side of Egs. (la)-(1d)
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FiG. 1. Coordinate system.

can be expressed in this coordinate system by using the curvilinear coordinate scale
factors

hy=1, (a)
he=r, (3b)
hy=1""=(1 + aer cos H)/e, (3c)

where € =a/R, is the inverse aspect ratio of the torus. When @ = | the coordinate
system is as described above. Setting ¢ =0 allows reduction to cylindrical coor-
dinates (r, 8, z = {/¢) referred to the minor axis.

After some algebra, the resistive MHD equations then become
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Note that, for reasons to be discussed in Section 4, we have assumed #5,=#,(r).
Equations (4a)-(4h) comprise eight equations in the eight primitive variables (B,,
Bg, B, v,, vy, v, p, p), and are the equations that we solve numerically. (In practice,
only two of Eqgs. (4a)}-(4c) are advanced in time; the remaining component of B is
determined from the condition V .-B =0, thus assuring that the fields remain
solenoidal.)

3. SPATIAL APPROXIMATION

In the numerical solution of Eqs.(4a)~(4h) the state variable U=
(B,, By, B;,v,,vg,0v,,p, p) is represented on mesh of N, X Ny X N, grid points (r;,
i=1,N,;0,j=1,Ngy; {, k=1, N)). The spacing in the poloidal (#) and toroidal
({) directions is uniform such that 46 =2n/N,, A{=2n/N,. We allow for
nonuniform mesh spacing in the radial coordinate, but in practice a uniform spacing
Adr=a/(N,.— 1) is used, for reasons to be discussed later.

The periodic nature of the solution vector U with respect to the & and { coordinates
allows a spectral representation to be employed for the finite approximation of spatial
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operators in these directions, since this representation is uniformly convergent at the
boundaries 0 and 27. The radial coordinate is treated by the method of finite
differences. These methods are discussed in more detail in the following sections.

3.1. Spectral Representation for the Periodic Coordinates

It is possible to represent any function on the interval (0 <8< 2n, 0 (< 27) by
the complex Fourier series,

oG el .
u(6,¢,0) = ‘\_‘ l @y (1) pitmotnd) (5)
m=—00 H=-w

where the complex Fourier coefficients are given by

27 d0 2n d€
am,n(t):JO a

e Lt 7i(m6+n§)' 6
2 ), g MB:GDe (6)

The reality of u(6, {) requires that

am,nzafm.—ns (7

where ()* represents complex conjugation.
When the function u(6, {) is approximated by M X N data points e.g., stored on a
mesh), it can be represented by the finite Fourier series

M/2 N/2

uMN(qu $ert) = l: : a,,,,,,(t) eltmotnin (8)
n=—M/2+1 n=—N/2+1
with
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" MN Jtl ! MNRTT R .

Here uy,,(6;,{,,t) is the MN-term approximation to the function u(f, {, ¢) evaluated
at the mesh point (6;,{,) at time ; 6,= (j— 1) 2n/M and {, = (k — 1) 2n/N. The
derivatives du/08 and ou/d¢ at the point (6, ;) and time ¢ are given by

au M/2 N/2 )

() = X N imay, (1) O, (10a)
00 /i m=T0241 n- R

au M/2 N/2 )

(B) = XN a0 e (10b)
ac Ik m=—-M/24+1 n=—-N/2+1

The spectral representation of the equations of motion is obtained by employing
Egs. (8) and (10) in some appropriate manner (to be discussed in Section 3.2) in the
right-hand side of the Eq. (4a)-(4h). This technique has several distinct advantages
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over finite difference methods. These properties are well documented [20], and are
discussed here only briefly.

3.1.1. Phase Error

To illustrate the phase error in finite difference representations, consider the model
differential equation

0
MM ogx<om w0 6) = u2m 1), (11)
ot ox
Using the one-dimensional analogue of Eq.(5), we obtain a set of differential
equations for the Fourier coefficients

da
—= =icna —0 LN . (12)

dt "

Now represent Eq. (11) on a set of N mesh points x;, where x; = (j — 1) 2a/N. If
we employ the second-order finite difference approximation to the spatial derivative

au U, — U
—) =L L j=2,3,.,N— L 13
(ax).,. 2@ 0 T (13)
and make use of the one-dimensional analogue of Eq.(8), we find that in this
representation the Fourier coefficients evolve according to the N equations

N
——=—+1<ng

. (14)

da, . (sin nAx) 4
dt ( Ax "

N', =

Thus Eq. (13) accurately approximates the solution of Eq.(11) only for long-
wavelength (1n| < N/2) modes. This representation is dispersive, with different
wavelengths propagating at different velocities. Phase error of this type is inherent in
all finite difference approximations to Eq. (11).

Now consider Eq. (10), the spectral representation of the derivative. When this and
Eq. (8) are employed, Eq. (11) becomes the set of N equations

da
—" =icna,, ——+1<n—, (15)

which is identical with the exact Eq. (12) except for the finite number of modes. Thus
all modes retained in the representation (8) satisfy the exact dispersion relation. The
only error is due to the retention of a finite number of terms in the Fourier series.
This truncation error is discussed in the next section.
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3.1.2. Convergence: Order of Accuracy

In the previous section we showed that the spectral representation (8) and (10)
leads to a faithful reproduction of the phase properties of all modes retained. Here we
consider the error after N terms in approximating the solution of Eq. (11).

For any ¢ > 0, we consider the error [20]

en(t) =u(x, t) — u\(x, ). (16)

For large N, we have |ey| ~ |ay|. Integrating the one-dimensional analogue of Eq. (6)
by parts p times, assuming that u(x) has continuous derivatives up to order p — I,
and that u‘”’(x) is integrable, it can be shown that

lay| < 1/N*, N> . (17)

In particular, if u(x) is infinitely differentiable and periodic on 0 < x < 27, then the.
error &, goes to zero faster than any power of 1/N as N — co. This is to be contrasted
with pth-order-accurate finite difference methods wherein the error vanishes like 1/N”.
(Equivalent accuracy is obtained in spectral methods for functions that are p — 1
times differentiable.) Thus spectral methods require relatively fewer modes (mesh
points) to obtain the same accuracy as a given finite difference method.

As with finite differences, the analysis in this and the previous section strictly holds
only for linear equations. However, there is a great body of evidence that indicates
that these properties continue to hold when nonlinearities are considered [20].
Spectral methods are, however, subject to aliasing errors. These are discussed in
Section 3.2.1.

3.1.3. Computation Time

The evaluation of the finite difference approximation to the first derivative,
Eq. (13), for all mesh points x; requires O(N) operations. The direct evaluation of the
spectral series, Eq. (10), for all mesh points x; requires ~O(N?) operations. Similar
scalings hold for the direct evaluation of quadratic nonlinearities and convolution
sums. However, when Fast Fourier Transforms (FFTs) are used [23], the evaluation
of finite Fourier series and convolution sums can be reduced to ~O(N In, N)
operations [15]. Such methods are called pseudospectral, and are discussed in the
next section. They require computer time comparable with finite difference methods
of the same resolution. In practice they are somewhat slower. However, because of
the exponential convergence properties discussed in Section 3.1.2, they require less
computer time than finite difference methods of the same accuracy. Examples of this
are shown in Section 5.4.

3.2. The Pseudo-Spectral Method

Consider the equation

ou u &*u
E:u.a;_i_nai.g.f, 0< x< 2, (18a)
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u(0,t) =u(2m, t), (18b)
SO, 1)=f(2m, 1), (18¢c)

which contains the essential features of the resistive MHD Egs. (4a)-(4h). The first
term on the right-hand side represents the quadratic nonlinearity introduced by the
convective derivative, the second term models the effects of dissipation, and the third
term represents sources, sinks, lower-order linear terms, forcing functions, etc. Here
we will consider only the approximations to the first and third terms. The dissipation
term is discussed in Section 4.3.

Substituting (8) and (10) into (18), taking the inner product with exp(—ipx), and
ignoring the dissipative term, we arrive at a set of evolutionary equations for the N
Fourier coefficients a,,:

d N2 N
;N (p—n)a,a,_,+/f,, p=0,1,.,—, (19a)
dt n:7m2+1 2

a_,=ay. (19b)
The set (19) is the spectral representation of Eq. (18). As mentioned in Section 3.1.3,
the direct evaluation of Eq. (19) for all a, requires O(N?) operations, as compared to
O(N) operations for finite differences. Additionally, while completely accurate,
Eq. (19) suffers from the defect that it can be quite complicated (especially when
applied to the full resistive MHD equations), and that it does not have the familiar
form of the configuration space Eq. (18). We are thus led to the pseudospectral
method, in which both the form of the original equation and the desirable properties
of the spectral representation are retained.

The pseudospectral approximation takes advantage of the fact that multiplication is
most efficiently performed in configuration space and differentiation is most
accurately performed in Fourier space. Fast Fourier Transforms are used to
communicate between the two representations. In principle it is irrelevant whether the
dependent variables are the N Fourier coefficients, as in Eq. (19), or the values of
u(x;) stored at the N mesh points x; in configuration space. In the first case the
transformation is made to configuration space to perform the convolution; in the
second case the transformation is made to Fourier space to perform the differen-
tiation. Both methods have the same accuracy, i.e., those of the fully spectral methods
described previously. Because of its familiarity, we have chosen the configuration
space representation.

The configuration space pseudospectral approximation to Eq. (18) at mesh point x;
is :

duy, Ouy ,
— ) =— I{— ; =1,2,.
( Er ),- uy(x; (3x )j+fN(xj), Jj=12..,N, (20)

where (Ouy/0x); is evaluated as in Eq. (10). The function u,(x;) is stored on the mesh
X; in configuration (physical) space. The array (duy/dx), is generated by
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transforming to Fourier space [Eq. (9)] to obtain the a,, and then transforming the
array ina, back to configuration space [Eq. (10)]. The quadratic nonlinearity is then
evaluated as a multiplication of the arrays u,(x;) and (Ou,/dx); at each x;.

When FFTs are used, evaluation of Eq. (20) at all mesh points requires O(N In, N)
operations. Thus, as mentioned in Section 3.1.4, the pseudospectral method is
comparable in speed to finite difference with the same spatial resolution.

It is to be emphasized that a by-product of pseudospectral method is the simplicity
of the resulting equations. Both the function and its derivative appear as arrays, the
latter being readily evaluated by a single subroutine call. The coding closely
resembles the equation being solved, making debugging a relatively easy task
resulting in reduced code development time.

3.2.1. Aliasing Errors

We have shown in Section 3.1 that spectral methods can lead to a physically
realistic and rapidly convergent approximation to a linear equation. When
nonlinearities are present, as in Eq. (18a), these methods are subject to aliasing errors
[15, 17, 18, 20] that arise from the generation by quadratic nonlinearities of modes
with wavelength shorter than n/4x. These errors, and an algorithm for preventing
them, are discussed below.

Consider two variables u; and v;, defined on a set of N mesh points x; = 27j/N,
and their Fourier coefficients a,, b,. Then

N/2

w= >  aemn, (21a)
k= —N/2+1
N/2
vi= Y et (21b)
k= —N/2+1
and
1A o
@ =~ e RN, (22a)
i=0
1! o
b=~ vye PN, (22b)
i=0

The product w; = u;v; has the Fourier expansion

N/2
- A i2xjl/N
W= Z_ c€ ™ ’
1= —N/2+1
1 N-1
-\ —i2njl/N
¢ = N 2_4 wje ’

Jj=0
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with the ¢/'s are related to a,, b, by

v N N
CI: \_ akb,_k, ‘_2‘+1<l<—2“- (23)
k=—N/2+1

Note that the range of the index k' =/ —k in Eq. (23) is —N + 1 < k' < N — 1, which
is outside the range employed in Eqs. (21a)-(21b). Thus the ¢;’s will contain infor-
mation from modes that are not resolved in the original representation. We now
discuss the nature of this error.

Even though Egs. (22a)—~(22b) define coefficients of the finite Fourier series
(21a)-(21b) only for —N/2 + 1 < k < N/2, they remain valid function definitions for
values of &k outside this range. In fact, evaluating Eq.(22b) for
k'=l—k=N—ky>N/2 we find that the coefficient b, , in Eq. (23) (that is not
defined in the original representation) has the same value as b,_,_, (that is a proper
Fourier coefficient). Similarly, when ! —k < —(N/2)+ 1, b,_, appears as b,_,, .
This phenomenon of one mode appearing as another is called aliasing error. We have
found that such errors can lead to nonlinear instabilities after many time steps.

in Egs.(21) and (23) to range over —-M IKM, —-M<k<M such that
[—k—N<—Mand[—k+ N>M. Modes outside this range are set to zero, since it
is these terms that contain the aliasing errors. Applying these conditions we find

M < N/3. (24)

Since k,,= N/2, aliasing errors are prevented by using two-thirds of available
Fourier space.

3.3. Representation of the Radial Coordinate

Since the solutions of Eqs. (4a)—(4h) are not periodic in the radial coordinate r, the
techniques discussed in Sections 3.2 and 3.3 are not directly applicable. Similar
problems are encountered in viscous hydrodynamic problems in nonperiodic
domains, such as flow in pipes or rectangular channels. In these cases approximation
in the nonperiodic coordinate is accomplished by expansion in Chebyshev
polynomials [20], which have the desirable property that their zeros (collocation
points) are densely spaced near the outer boundary giving a naturally concentrated
mesh there. This is important since hydrodynamic boundary layers form in this
region. In resistive MHD, the important boundary layers are associated with filamen-
tation of current, occur internally, and may form spontaneously at non-predetermined
locations. Thus a uniform mesh, or one that is internally dense, is desirable.
Expansion in Bessel functions, the natural functions for anmalytic investigation, is
flawed by nonuniform convergence at the outer boundary and lack of a fast transform
algorithm [20]. Thus, in spite of the deficiencies discussed in Section 3.1, we choose
finite differences as the most efficient representation of the radial coordinate.
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We define the following approximation to the first and second radial derivatives
appearing in.Eqs. (4a) — (4h):
ou Uj g — Ui

My, M Mo 25
“or u'A+ri+A7r,. (253)

1 0 Fiia — Tl
- -2 i+1/2%i41/2 i—-1/2%i—-1/2 25
r or (ru) rdd ri+4_r) ’ (255)

19 (o4 2 Uiy — U Uy —u;_,
rc?r(r(?r)—ri(d+ri+zl_r.)[r”‘/z( 4, r, )_r';m(——_A,r,‘ )J, (25¢)

where 4, ri=r, ,—r, d_ri=r,—r,_,, and r;,,, = (r;;, +r;)/2. While we have
allowed for a nonuniform radial mesh, in practice a uniform mesh employed, as
discussed above. On this mesh, Egs. (25a)-(25¢) attain second-order accuracy.

Note that we use the centered difference formula, Eq. (25a), rather than donor cell,
or upstrem—downstream, methods. When the latter methods are applied to toroidal
locations differing in phase by n/n radians [so that for the nth mode u,(r, 6, () =
—u,(r, 6, + n/n)] the implied relationship ou,(r, 6, {)/or = —0u,(r, 6, + n/n)/or is
not retained, due to the change in sign of u,. We have found this to cause anomalous
rotation of the plasma column.

3.4. Radial Smoothing

In Section 3.1.1 we discussed the inherent inaccuracies in the representation of
short-wavelength modes with finite difference methods. These phase errors, coupled
with the natural tendency of the quadratic nonlinearities to propagate information to
short wavelengths, can lead to an accumulation of short-wavelength noise that, while
not necessarily unstable, may eventually dominate the solution.

In our algorithm, this noise appears only in the radial direction. We remove it by
applying a spatial filter that damps the short-wavelength modes while leaving the
longer wavelengths relatively unchanged. After the solution has been advanced a
complete time step by the methods discussed in Section 4, it is modified at each point
by

vl __ o % * gk *
ups ' =ulf+alul 2+ uiy ), (26)

where u* is the latest approximation to u"*!, obtained by time advancement, and
0 < a < 4. When a =, the amplitude of the k, = n/4r mode is reduced to zero, while
that of the k = n/54r (A = 104r) mode is reduced by less than 10%. In practice we
use either ¢ = § or a = §.

The smoothing algorithm (26) is equivalent to adding a term of the form od’u/or?
to the equations, where 0 = adr?/At. The scheme is this stable for a < 3, as is always
the case.
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3.5. Boundary Conditions

To obtain a solution, Egs. (la}-(1d) must be supplemented by boundary
conditions. Periodicity is automatically obtained in the # and { coordinates. We
assume that the surrounding circular cross-section wall is nonporous, and is a good
electrical conductor. Thus

|

A-v

n-B

0, (27a)
0, (27b)

at r=a, where # is a unit vector normal to the wall. Evolutionary equations for the
tangential components of v at the wall are found by employing (27a)}-(27b) in
Eq. (1b). The result is

ov . 1
?zi:v,'V,v%-nn- (v,-V,v)—;th

1
— 5 BXAI-A (28)

where v, = (1 X v) X A is the tangential component of v, and operator V, is defined
through the relationship

V=di-V4V, (29)
When the wall is perfect electrical conductor, we have the condition
AxJI=0, (30)

which may be used to derive boundary conditions on the normal derivatives of B,.
However, we have found it superior to use Eq. (30) and (27a)-(27b) in Eq. (1a) to
derive evolutionary equations similar to (28) for the tangential components of B. In
many applications, magnetic flux may enter or leave through the wall (e.g., from an
external electrical circuit). In this case the wall does not appear as a perfect
conductor to the mean fields, and separate conditions on these Fourier components
are employed.

It remains to specify boundary conditions on the thermodynamic quantities p and
p. An evolutionary equation for the density is obtained by employing (27a) in (lc),
while evaluating the normal component of (1b) at the wall yields

A-Vp=—Fh-(pv-Vv—JXB) (31)

as a condition on the normal derivative of the pressure.

In addition to the physical boundary at the wall enumerated above, conditions
must be imposed at the origin r = 0. These may be derived by requiring the solution
to be analytic independent of numerical approximation. Similar ideas have been
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discussed in detail elsewhere [3]. Scalar quantities (B, V', p, p) can have only finite
m =0 Fourier amplitudes, and vector components (B,,B,,v,,v,) can have only
finite m = 1 Fourier amplitudes at the origin that are related by B, =iB,, v,=1iv,.
The Taylor series expansion of these quantities about the origin consists of only even
powers of r. The m = 1 components of scalar quantities and the m = 0 components of
vector quantities have a power series about the origin that consists of only odd
powers of r. (This can be shown by induction since the gradient of a scalar can have
only a finite m = 1 component and likewise the divergence of a vector can have only
a finite m = 0 component at the origin. Repeated application of these operations leads
to the above result.) Using these facts, we can derive evolutionary equations for the
Fourier coefficients to be advanced at the origin by taking the limit of (4a)-(4h) as
r— 0. We find

0B, . (0B, 0B, . 80, o, . 00,
N

ot or or or ¢ or
-7 @+§ 0, —aeB, (6, +70, )+ \2__43231
{o 8C {o ac € r vr] ro 770) arz
&’B, | ac[0B s s eB, \ 11
Z o T T B 274
R [ e (B, 4B 21y )]\ (322)
8B, o8 0B - o, - 3
skl (N, B (P Gt SRR .__.QL) 2 Br 2= S8
P (805 +2 (B )
- O oB O 0B
-2 ‘o — g, —2t—ac |0, | B, +B 5, P
B, 5 o ae[vgo( »+ B, )—10, 3(}
. ;2 &’B, . 8B, e B, | 9B,
o or e or or
‘B, 0B, 0B ]
-2 __ia___’L____’;L)] , 32b
(z & o 1\ (320)
av,, I I W I 0B, 8B,
:—"Url _v§0 + o I3 (——L———‘L)
ot or o po o or
~ 9B, 1 &5, ae(., 1 =
B, | T (5 B 2
B, or ] 2p, oOr 3 (U“’ Do “’)’ (32¢)
W gy Peuyy B 5 %4 1P
a ( 8, -1 or ) Yool 2p, &

b= {En (ﬁ%“%) +§r"<%ﬁa—§€”

B, ~ ~
+ ae [—? (B, +B,_ )=V (0, + le)], (32d)
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é o o5, o
Po_ (5 Piyg, —p—‘)—ﬁo<2—‘L;r’ +——l§é)

- ﬁgoaig + agho(B, + 5, ), (32¢)
where @, denotes the mth complex Fourier coefficient of the variable u.

In Egs. (32a)-(32¢) the first derivative with respect to radius of the m=0
components of vectors and the m = 1 components of scalars at » =0 is evaluated by
simply finding the amplitude of these quantities at the first radial mesh point and
dividing by Ar. Likewise, the second derivative with respect to radius of the m =1
components of vectors and the m = 0 components of scalars at r = 0 is evaluated by
subtracting the values of these quantities at the first mesh point from those at the

origin and multiplying by 2/4r%.
4, TEMPORAL APPROXIMATION

4.1. Splitting of Spatial Operators
We can write Eqgs. (4a)-(4h) symbolicaily as

ou

7=D1'U+D2'U, (33)

where U = (B, V, p, p) is the solution vector, and the operators D, and D, represent
the first- and second-order derivatives, respectively. Examination of equations
(4a)—(4h) shows that the first-order operator D, can be written as

D,=R+0+2, (34)

where R, ©, and Z contain only radial, poloidal, and toroidal spatial derivatives,
respectively. We make use of this splitting in the time-advancement algorithm,
discussed below.

4.2. Adjective Terms: Leapfrog

The form of Eq. (34) suggests the successive application of the formulas

U(l) _ Un—l
—; =R~ U, (35a)

U(Z) _ U(l)
=0 U, (35b)

0-u?
- -2z,-U", (35¢)

At
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where dt=¢""'—¢ 1, U '=U@E"" "), U"=U(@"), and UP, U?, and U are
successive approx1mat1ons to U"*!' = U(¢"*"). The subscripts FD and PS refer to the
finite difference and pseudospectral approximations to the differential operators, as
discussed in Section 2.

The representation (35) allows each spatial coordinate to be treated individually.
This effectively separates the finite difference and pseudospectral operators. It results
in reduced storage requirements, and allows each dimension to individually take
advantage of machine hardware features, in particular vectorization.

Since the time integrations are performed explicitly the operations indicated by
Eqgs. (35a)-(35¢c) commute. Therefore the difficulties that can arise due to the
requirement that each individual split step be a mathematically well-posed problem in
the case where each step is calculated implicitly (a nonlinear finite approximation
requires iteration to convergence) do not occur [24].

If one assumes 1 = n,(r), then the terms in Eqs. (1a)-(1d) proportional to Vy can
also be written in the form (34). Even though they strictly arise from the same term
as the diffusion operator, they are included in this step of the algorithm because they

£ 1o 1o 1asl £ - il illan. [AL]

technique that replaces the solution U”" by the average of U”*' and U" '. We have
found that the application of this averaging every 100 time steps is sufficient to avoid
the decoupling instability that is inherent in the leapfrog scheme.

4.3. Time Step Restriction

A straightforward stability analysis of model equations of the form (35), with r
approximated by finite differences, and & and { by pseudospectral methods, leads to a
restriction on the time step

2
May,

At

AN

(36)

Ar

where M =N,/2 is the largest poloidal mode number, N=N,/2 is the largest
toroidal mode number, and a,(a =r, 6, () is given by

a,=|v,|+ecl+vi, (37)

where c2 = yp/p is the square of the local sound speed and v} = B?/p is the square of
the local Alfvén speed.

Since M ~ 1/46, Eq. (36) can be quite restrictive near the origin (r = 0), becoming
formally second order for r ~ Ar. The source of this problem is that the poloidal
mesh, while uniform in 46, is nonuniform in arc length As = r46. The mesh thus
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allows for much shorter wavelengths to be resolved near the origin than near the
outer boundary. The problem is alleviated by replacing the fixed number M by a
function M(r)< M such that wavelengths shorter than those resolvable near the
boundary (A, = 2ad6) are removed from the calculation [26]. This smoothing, or
filtering, of poloidal modes as a function of radius restores Eq. (36) to first order with
a considerable gain in allowable time step.

Theoretically, the filtering procedure described above allows only modes with
poloidal mode number m = 0 to exist near to r = 0. In order to accurately model the
dynamics, clearly m = 1 must also be allowed. We have found that for many cases
this is also too restrictive, and accurate results are obtained by allowing m=2 to
extend to r=0.

4.4. Diffusion Terms: Implicit

The time step restriction (36) applies only to the advective terms discussed in the
previous section. When diffusive terms arising from second-order spatial operations
are considered, the time step restriction is formally second order everywhere. When
N, is small enough (the cell Reynolds number R, = vdr/n, > 1), the advective time
step restriction dominates. However, in cases where 7n,(r) has large spatial variation
the diffusive restriction may dominate locally. To circumvent this problem we
advance the diffusive terms (terms proportional to 7,) in Egs. (4a)}-(4h) by the
implicit algorithm

(1—nowdeL}, | BLY = no(1 —w)4eL? B+ B, (38)

mil =

where B2%!(r) is the (m,[) complex Fourier coefficient of B(r, ¢"*"), B,, (r) is the
(m, ) complex Fourier coefficient of the advective approximation to B(r,:""')
[obtained from Egq. (35c)}, L2, is the spectral-finite difference approximation to the
Laplacian, and w is a coefficient such that (0 < w < 1). When w > 0.5 the algorithm
is unconditionally stable, and when w=0.5 it is second-order accurate in Az. The
three-point operator on the left-hand side of Eq. (38) is easily inverted using the well-
known tridiagonal algorithm [25].

5. EXAMPLES

In this section we briefly describe several examples of applications of the
algorithms presented here. These problems are all relevant to simulation of the
reversed field pinch (RFP), a diffuse toroidal pinch with toroidal and poloidal
magnetic field of comparable magnitude. The model presented in this paper is thus
appropriate, for reasons discussed in Section 2.
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5.1. Toroidal Equilibrium
Magnetohydrodynamic equilibrium is defined by the force balance condition
Vp=1J XB, (39)

which is the steady-state, zero flow limit of Eq. (Ib). For a straight cylindrical
system, solutions of (39) are functions of » only. These solutions are characterized by
circular concentric surfaces centered at r = 0.
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Fic. 2. (a) Kinetic energy versus time for relaxation to toroidal equilibrium. The nonuniform
behavior is the result of the application of different values of the friction parameter v throughout the
calculation. (b) Energy in the radial component of the magnetic field versus time for the toroidal
relaxation shown in (a).
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When toroidal effects are introduced axisymmetric ({-independent) solutions are
functions of both r and €. The accurate numerical solution of these problems has
been the topic of much research [27]. However, in many instances (such as obtaining
initial conditions for dynamical simulations) such accurate methods are not required,
and toroidal equilibria may be obtained by dynamical relaxation. In this method the
initial conditions consist of a known cylindrical equilibrium. Of course, this solution
does not represent equilibrium in a torus, and as time proceeds the nondissipative
dynamical equations cause flows to appear that move the plasma toward a state of
force balance. Because of the kinetic energy of the flow, the system will overshoot its
new equilibrium position resulting in oscillations that may continue indefinitely,
unless damped. This is accomplished by rewriting Eq. (1b) as

‘% =F—wv, (40)

where the left-hand side represents the advective derivative, F is the combined
pressure and Lorentz forces, and v is a friction coefficient chosen to remove the
kinetic energy from the system. When the kinetic energy becomes less than some
prescribed value, a toroidal equilibrium has been determined.

In Figs 2a,b we show the kinetic and radial magnetic energies as a function of
time for such a calculation. The initial (cylindrical) state is characterized by profile
of the form

q(r)=qo(1 +ar® + br?), (41)

where g = érB /B, is called the safety factor, g, = ¢(0), an a and b are constants. For
the configuration considered, we have ¢=0.2, g(0)=0.1. In general, a pressure
profile p(r) must also be specified. For this case, and all subsequent examples in this
paper, we have taken p = 0 initially. Then Eqs. (39) and (41) completely specify the
cylindrical solution. We see in Fig.2 that the plasma approaches toroidal
equilibrium. The nonuniform behavior of the kinetic energy is the result of the
application of different values of v throughout the calculation.

The axisymmetric flux surfaces in the initial and final states are shown in
Figs. 3a, b. These are the level curves of the function w(r, #) defined by

Oy 1 oy r
—=——B,, —=-B,, 2a,b
e (42a.b)
where 7 is defined in Eq. (3c). We see that in the resulting toroidal equilibrium, the
flux surfaces are no longer concentric circles, and that the magnetic axis (the point
where B, = 0) has shifted slightly outward a distance dr/a =~ 0.05. This shift is small,
in agreement with theory [28].

581/55/3-11
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FiG. 3. [Initial (a) and final (b) flux surfaces for the toroidal relaxation problem. Note the slight
toroidal shift characteristic of the reversed field pinch.

5.2. Helically Symmetric Simulations

Because of the slight nature of the toroidal shift in RFP configurations, it is
sufficient in many cases to carry out calculations in cylindrical geometry. Then the
dynamical Eqs. (4a)-(4h) preserve helical symmetry. Thus if initial conditions are
prescribed by a given helicity A =n/m, where n and m are axial (toroidal) and
poloidal mode numbers, then all modes (m, n) generated nonlinearly will retain the
same helicity A. This property of the MHD equations has been exploited previously
to allow the solution of certain three-dimensional problems with two-dimensional
codes [1, 3], and has yielded valuable insight into plasma dynamics. In our case such
problems may be reproduced, as the numerical solution described in this paper also
preserves initial helicity exactly.

In Figs. 4a—f we show the helical flux surfaces at various times resulting from the
nonlinear evolution of the m = 1, ne = 0.3 tearing instability in the force-free Bessel
function equilibrium
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By(r) =J,(r); (43a)
B, (r) =Jo(r), (43b)

which is a cylindrically symmetric solution of (39) when p = 0. These flux surfaces
are level curves of the helical flux function

o, 0) = [ [boyor) + r'h € by, ()] dr’

(r)e™® + c.c., (44)

"m,n

ir
——b
m

where /= n/m is the helicity, b, , b, ., and b,  are the (m, n) complex Fourier

4 2

Fis. 4. Helical flux surfaces at various times for the nonlinear evolution of the m=1, ne =0.3
tearing mode in the Bessel function model equilibrium.
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coefficients of the magnetic fields, and c.c. denotes complex conjugate. In helical
symmetry the magnetic field lines are tangent to these contours. Figure 4 is in close
agreement with previous two-dimensional helical results |3, 5].

5.3. Mode Interaction

Fully three-dimensional effects are observed when the initial conditions contain
more than one helicity. In this cylindrical example, the initial conditions consist of
the force-free equilibrium (41) with gq,=0.15748, a = —1.8748, b=0.8323, along
with the two linearly unstable eigenmodes (m=1, n=—10) and (m=1, n=—11).

107" ———— —

Sopvidr

0 20 40 60 80
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sBidr

1 "
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Fic. 5. Kinetic (a) and radial magnetic (b) energies versus time for a three-dimensional simulation.
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These modes are obtained from a linear resistive MHD code that employs the method
of matrix shooting [29]. The (m = 1, n = —10) mode in this equilibrium has been the
focus of detailed single helicity calculations [7].

The case is run on a grid of 65 radial mesh points, 8 poloidal mesh points (modes),
and 64 axial mesh points (modes). This allows for the higher harmonics (2, —20),
(2,-21), and (2, —22) resulting from mode interaction to be well represented in the
calculation. The accurate computation of all 512 modes and their interaction would
be impractical without the fast transform techniques presented in this paper.
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Fi1G. 6. Energy E, , in various (m, n) modes for the three-dimensional case of Fig. 5. The initial
conditions consisted of (0,0), (I1,—10), and (1, —11) only. Many more modes are present than shown
here.
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In Fig. 5 we plot the kinetic and radial magnetic energies
E,‘szu2 &, E,:sz d’r (45)

as functions of time for this case. We see a period of exponential growth followed by
nonlinear saturation and relaxation for > 40¢,. In Fig. 6 we plot the energy in
various (m, n) modes

Epn=| b%,(1)b,, ()rdr, (46)
L a0 by,

where b, is the complex Fourier coefficient of B,, as function of time. Note that
many unstable modes appear in addition to those initialized at ¢ = 0.

In Fig. 7 we plot the helical flux contours |Eq. (44)] for several (m,n) modes in
the system at various times. It is seen that this configuration is rich is model activity.
Note that in three dimensions these contours merely aid in visualization, and have no
relation to magnetic field lines as they do in the case of single helicity.

In Fig. 8 we plot the spectral energy, Eq. (46), for m=0, 1, and 2 as a function of

o © ®m® wn~noONwS ® O

FiG. 7. Helical flux contours for several (m, n) modes in the three-dimensional simulation.
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n a various times. The sharp cutoff at large |n| is due to dealising, as discussed in
Section 3.2.1. Note the broadening of the spectrum about the initial (1, —10) and
(1, —11) modes, and the early generation of modes with opposite helicity h = n/m.
The spectrum is fully developed by the saturation time ¢ =40¢,. It is difficult if not
impossible to select preferential modes in this case. Such turbulent states are most
accurately modeled by the spectral methods presented here. This and similar cases
will be discussed in more detail in a future publication.

5.4 Comparison with Finite Differences

In this section we compare the results of the pseudospectral algorithm with those
obtained by finite differences. For our algorithm this is a relatively simple matter, as
all derivative arrays are calculated in subroutines. The choice of finite differences or
spectral computation is simply controlled by a switch in the routine.

For a comparison we choose Eq. (45) and its growth rate
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Fic. 9. (a) Radial magnetic energy versus time for several axial mesh sizes for both
pseudospectral (PS) and finite difference (FD) calculations. Note that PS64 and PS32 are
indistinguishable from another. (b) Growth rate of the curves shown in (a). Note the poorer
convergence properties of finite difference methods.
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for both finite differences and the pseudospectral algorithm for various values of the
number of axial mesh points (modes) N,.

The results are summarized in Figs. 9a, b, where we plot E, and y versus ¢ for both
methods for various axial meshes. When N, = 64 (the base case) the two methods are
in substantial agreement. When N,=32 the results begin to diverge, with the
pseudospectral results closely following the base. When N, =16 neither method is
very accurate, but the pseudospectral method exhibits much more integrity than do
finite differences.

For the same number of mesh points (modes), finite differences require somewhat
less computer time than does the pseudospectral method. However, as discussed in
Section 3.1.2 and demonstrated in Fig. 9, the pseudospectral method requires fewer
modes to obtain comparable accuracy. We have found that, for the cases considered,

—— the nseudospectral gg%l%o;d requires approxim If the computer time of finite _
differences to obtain a given standard of accuracy.

6. CONCLUSIONS

We have developed an algorithm for the solution of the compressible, resistive
MHD equations in three space dimensions. These equations are cast in local cylin-
drical coordinates, which can represent a circular cross-section torus or a periodic
cylinder. We have approximated the radial terms by finite differences, and have used
the pseudospectral algorithm for the periodic directions. We have shown that this
technique, which has been extensively used in hydrodynamics, is well suited to the
computation of nonlinear states of plasmas in magnetic fusion experiments when
many mode interactions are involved. We have computed the turbulent states that
result from the nonlinear interaction of unstable modes of different helicity. We have
found that when fast transform techniques are used the pseudospectral algorithm is
more efficient than finite differences in that results of comparable accuracy are
obtained with less computer time.
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